If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2+2u-6=0
a = 8; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·8·(-6)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-14}{2*8}=\frac{-16}{16} =-1 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+14}{2*8}=\frac{12}{16} =3/4 $
| 5(y-4)-2y=4 | | (2x-50)+(x+10)=180 | | 27=5(x+7)+3x | | 100x+5=64x=14 | | 8x–5=–2x+15 | | –8x–5=–2x+ | | 8/20x-x=-11/4 | | 2+x=105 | | 2(x=8) | | 12x^2+3=-1 | | x/2+3x-28=0 | | –8x–5=–2x+7 | | 2x*x-8x=x | | x/2+x=1.25 | | 9t^2+30t+25t^2=0 | | -0.3661x+73.898=-0.0067x+39.265 | | n2=35+7n | | 2x^2+8x-1056=0 | | f/2+7=11 | | 3(3y+1)4y=−23 | | 3(3y+1)+4y=−23 | | 10x-33+4x-17=180 | | 6y+6^2=0 | | 7x+2=23+4x | | 2x+1-2x+6=0 | | -9-4x=-x-39 | | 8+6b=–52 | | 10^(-x)=7^6x | | 3x+5(4x-7)=11 | | 63=3v+4v | | -5/2-6/7w=-5/3 | | 8x=2+30 |